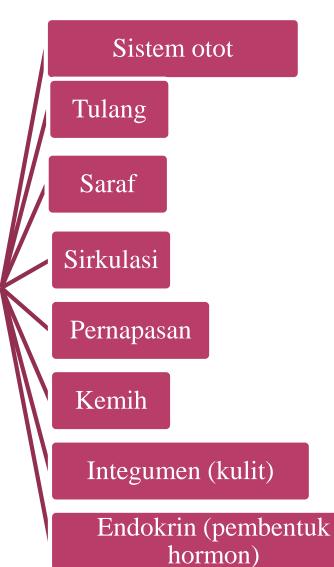

FISIOLOGI OLAHRAGA

Dr. Hanna Cakrawati

FISIOLOGI OLAHRAGA

• Ilmu tentang perubahan-perubahan fungsional yang terjadi sebagai respon terhadap satu sesi olahraga dan adaptasi yang terjadi akibat sesi-sesi olahraga yang berulang.



RESPON AKUT VERSUS LATIHAN FISIK

- Jika kegiatan fisik dilakukan secara teratur > tubuh akan adaptasi untuk membuat stres fisik selanjutnya lebih mudah dihadapi.
- Adaptasi dimulai segera setelah program latihan fisik dimulai meskipun mungkin diperlukan waktu beberapa bulan hingga beberapa tahun sebelum hasilnya terlihat.

OLAHRAGA MEMERLUKAN KOORDINASI BERKEPANJANGAN

Olahraga

KLASIFIKASI OLAHRAGA BERDASARKAN KEBUTUHAN 02

Olahraga aerobik (dengan O2)

Melibatkan banyak kelompok otot

Intensitas yang cukup rendah/ sedang

Jangka waktu yang cukup lama

Olahraga anaerobik (tanpa O2)

Aktivitas jangka pendek

Berintensitas tinggi

Energi bergantung depo di otot

Sumber bahan bakar siklus asam sitrat dan rantai transpor elektron

ADAPTASI LATIHAN FISIK AEROB DAN ANAEROB

- Adaptasi dgn meningkatkan kemampuan otot menyimpan dan memproses substrat energi secara aerob.
- Meningkatkan simpanan glikogen miosit.
- Meningkatkan ukuran dan jumlah mitokondria
- Menaikkan kandungan mioglobin otot
- Menaikkan jumlah enzim oksidatif

 Adaptasi dengan meningkatkan kekuatan melalui hipertrofi otot, perbaikkan rekuitmen saraf dan menaikkan daya tahan melalui perubahan metabolik (glikolisis)

Latihan fisik aerobik

Latihan fisik anaerobik

KLASIFIKASI OLAHRAGA

Olahraga	Tipe
Lari sprint 400-m	Anaerob
Lari 10-km	Aerob
Bersepeda dilintasan (1 km)	Anaerob
Bersepeda dijalan (40 km)	Aerob
Berenang gaya bebas 100-m	Anaerob
Berenang gaya bebas 1500-m	Aerob

OTOT DALAM KERJA FISIK

PENENTU AKHIR KESUKSESAN PADA PERTANDINGAN ATLETIK ADALAH OTOT BAGI TUBUH:

- Kekuatan otot sewaktu dibutuhkan
- Daya yang dapat dicapai otot sewaktu kerja
- Berapa lama otot dapat melakukan aktifitasnya (ketahanan otot)

KEKUATAN, DAYA DAN KETAHANAN OTOT

Kekuatan otot

- Ditentukan oleh ukuran, potongan lintang otot.
- Membesarkan otot → kekuatan otot >>

Daya otot

- Suatu pengukuran jumlah total kerja yang dilakukan otot dalam satu satuan waktu (kg-m/mnt) → otot dapat mengangkat berat 1 kg setinggi 1 m dalam 1 menit.

Ketahanan otot

 Bergantung pada glikogen yang tersimpan dalam otot sebelum periode kerja fisik

DIET NUTRISI TERHADAP KETAHANAN OTOT

Ketahanan otot yang di ukur dari **waktu** yang dibutuhkan untuk **dapat bertahan** sampai timbulnya **kelelahan** maksimal. Ex: atlit lomba marathon

	Minutes
High-carbohydrate diet	240
Mixed diet	120
High-fat diet	85

	g/kg Muscle
High-carbohydrate diet	40
Mixed diet	20
High-fat diet	6

Jumlah simpanan glikogen

SISTEM METABOLIK OTOT DALAM KERJA FISIK

Struktur kimia dan adenosin trifosfat

SISTEM OTOT SKELETAL

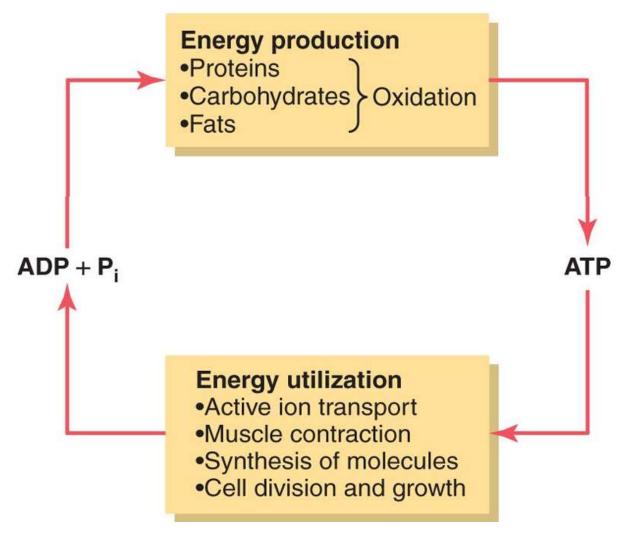
Olahraga dan aktifitas fisik menggunakan **otot skeletal** untuk menghasilkan kekuatan yang menggerakkan tulang melalui tendon.

Tulang akan bergerak di sepanjang vektor kekuatan dalam kisaran gerak yang spesifik-sendi untuk mentransfer kekuatan

Otot+tulang+ATP

misalnya **melempar bola basket kepada keranjangnya**

ADENOSIN TRIFOSFAT (ATP)


 Sumber energi yg digunakan untuk kontraksi otot → ATP
 Adenosine-PO₃ - PO₃ - PO₃

● 1 radikal fosfat dilepaskan, >7.300 kalori energi dibebaskan untuk menggerakan proses kontraksi otot.

 $ATP \rightarrow ADP \rightarrow AMP$

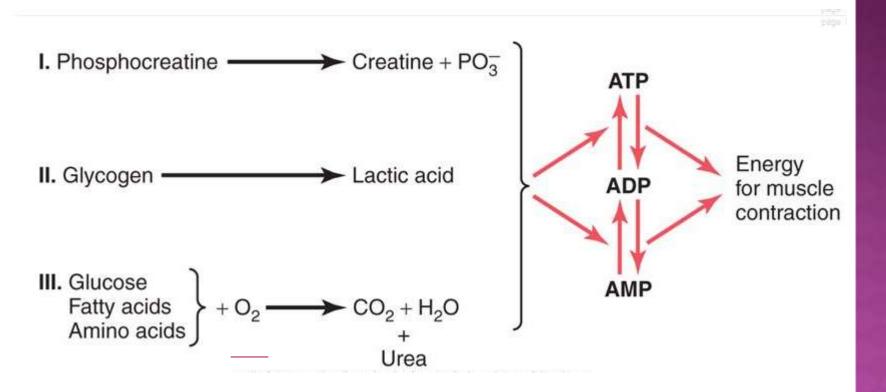
ATP
$$\begin{array}{c|c} -12,000 \text{ cal} & ADP \\ + \\ +12,000 \text{ cal} & PO_3 \end{array} \begin{array}{c} -12,000 \text{ cal} & AMP \\ + \\ + \\ 2PO_3 \end{array}$$

ATP ADALAH PENYEDIA ENERGI TUBUH

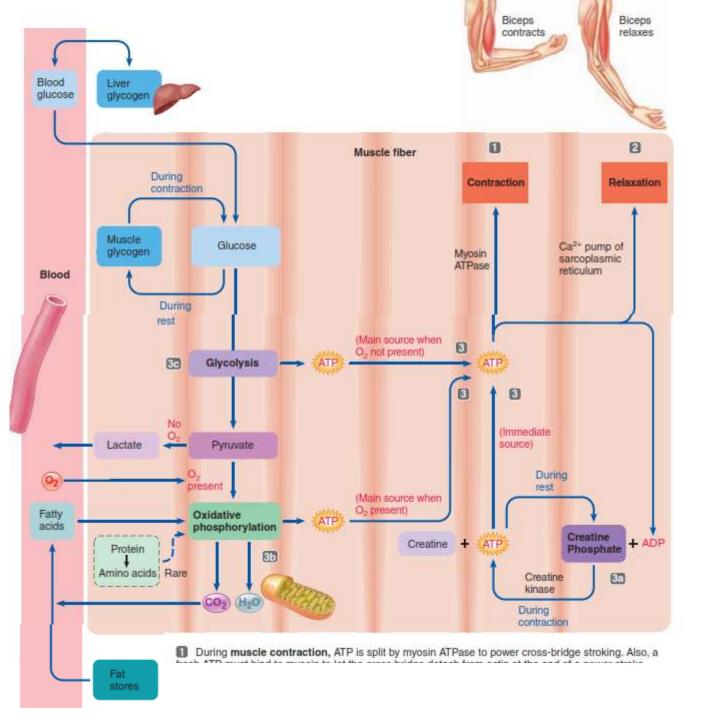
ATP sebagai rantai penghubung utama antara sistem penghasil energi dan sistem penggunaan energi tubuh

ENERGI UNTUK KONTRAKSI: ATP & PHOSPHOCREATINE

- Otot disebut sebagai mesin pengubah energi kimia menjadi energi mekanis
- Sumber energi utama adalah fosfat
- Fosfat yang dipakai oleh otot berasal dari penguraian karbohidrat (penguraian glukosa menjadi CO2 dan H2O) dan lipid (FFA: Free Fatty Acid) serta fosforilkreatin
- Saat istirahat ATP di mitokondria melepaskan fosfat ke kreatin → fosforilkreatin

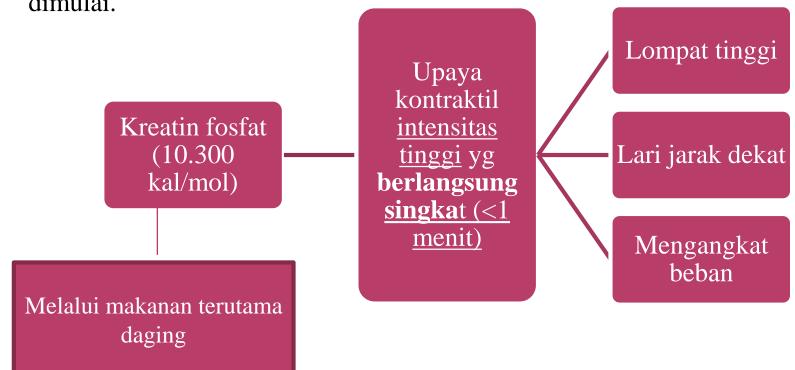

Sherwood. Fisiologi manusia dari sel ke sistem edisi 6. hal.298 Silverthorn, Human physiology integrated approach 5th, hal.420

SISTEM METABOLIK OTOT DALAM LATIHAN


- Di dalam otot terdapat sistem metabolik dasar yang sama seperti di dalam semua bagian tubuh yang lain
- Sistem metabolik tersebut:
- 1) Sistem fosfokreatin-kreatin
- 2) Sistem glikogen-asam laktat
- 3) Sistem aerobik

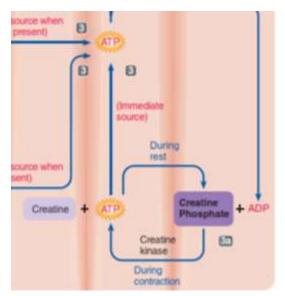
Sistem anaerobik

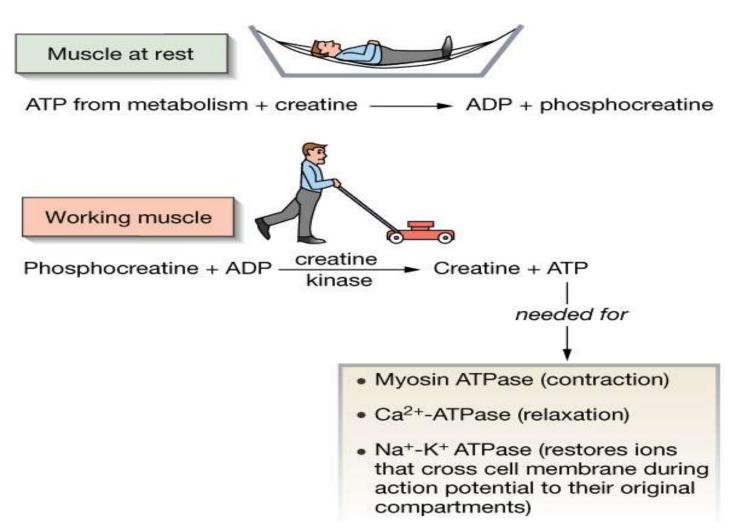
SISTEM METABOLISME ENERGI


Ketiga sistem metabolisme yg terus menerus menyuplai ATP dalam serat otot

JALUR
METABOLIK
YANG
MENGHASIL
KAN ATP
SELAMA
KONTRAKSI
DAN
RELAKSASI
OTOT

I.SISTEM KREATIN FOSFAT


Creatine ~ PO;

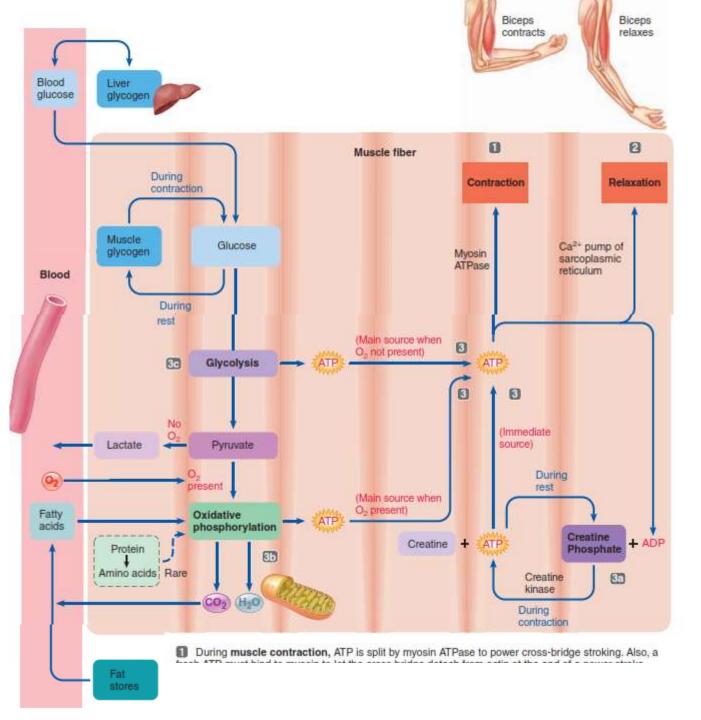

SISTEM KREATIN FOSFAT (CONT..)

Gabungan ATP sel dan fosfokreatin → <u>sistem</u> <u>energi fosfagen</u> mendukung daya otot maksimal <u>selama 8-10 detik → lari 100 m</u>

Energi dari sistem fosfagen digunakan untuk letupan-letupan singkat tenaga otot maksimal.

ENERGI UNTUK KONTRAKSI: ATP DAN PHOSPHOCREATINE

(Silverthorn, Human physiology integrated approach 5th, hal.420)


SISTEM KREATIN FOSFAT (CONT...)

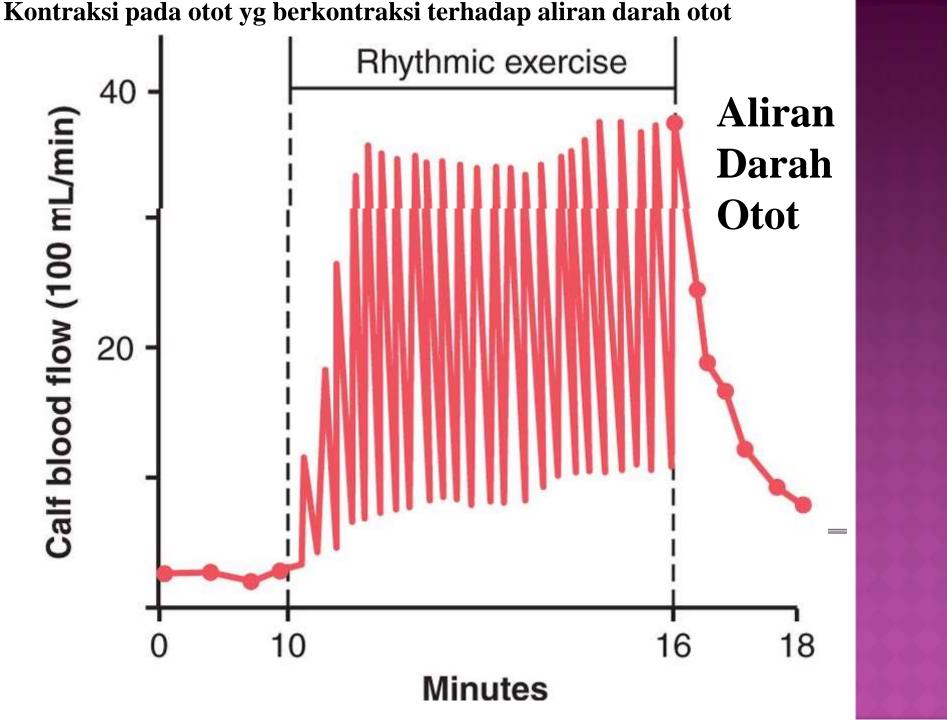
- Pemberian kreatin tambahan bagi otot → simpanan kreatin fosfat bertambah → peningkatan kinerja aktivitas yg memerlukan letupan energi singkat.
- Suplemen kreatin harus di gunakan hati-hati!
- Simpanan kreatin tambahan tidak bermanfaat pada aktivitas yg memerlukan waktu lama yang mengandalkan mekanisme-mekanisme pemasok energi jangka panjang.

II.FOSFORIOLASI OKSIDATIF (SISTEM AEROBIK)

- Jika aktivitas kontraktil dependen energi akan dilanjutkan > otot beralih ke jalur alternatif fosforilasi oksidatif dan glikolisis untuk ATP.
- Berlangsung di mitokondria otot jika tersedia O2.
- Jalur ini dijalankan oleh glukosa atau asam lemak.
- Menghasilkan 36 molekul ATP untuk setiap molekul glukosa.
- Fosforilasi oksidatif relatif lambat karena banyaknya tahap yg harus dilalui.
- Sistem ini dapat berlangsung beberapa jam (tergantung pada intensitas exercise serta ketersediaan substrat→ glukosa, asam lemak, asam amino)
- Olahraga ringan (jalan kaki) sampai sedang (joging atau berenang) → Olahraga aerobik atau olahraga bersifat daya tahan

- Sumber glukosa dan asam lemak berasal dari makanan yg masuk.
- Otot mampu menyimpan glukosa dlm jumlah terbatas (glikogen).
- Taktik yg digunakan sebagian atlet sebelum pertandingan → peningkatan asupan karbohidrat sebelum suatu pertandingan

JALUR
METABOLIK
YANG
MENGHASIL
KAN ATP
SELAMA
KONTRAKSI
DAN
RELAKSASI
OTOT

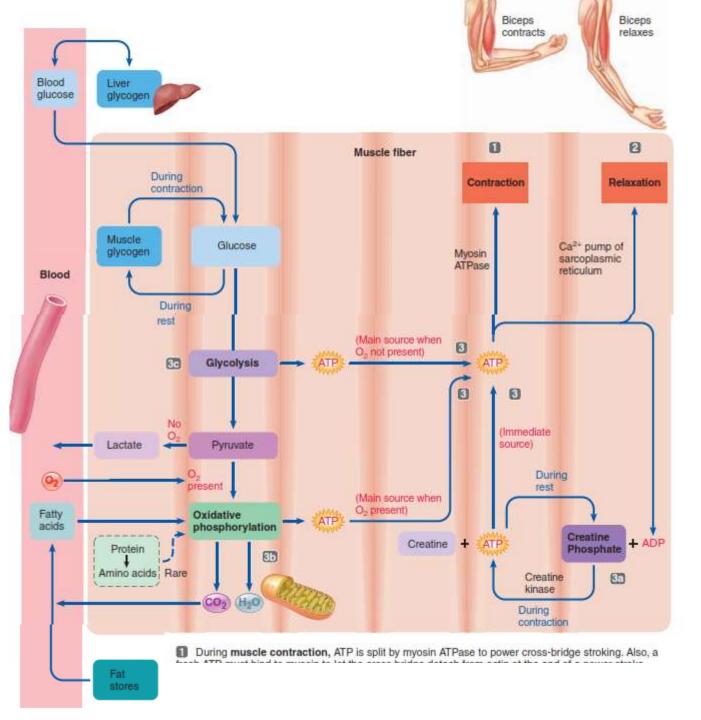

MEKANISME PENINGKATAN 02 KE OTOT SEWAKTU OLAHRAGA:

- Pernapasan yg lebih cepat dan dalam → peningkatan O2 yg masuk
- Lbh banyak darah yg dialihkan ke otot yg sedang beraktifitas → dilatasi pembuluh darah yg mendarahinya
- Molekul Hb yg membawa O2 dlm darah mengeluarkan lbh banyak O2 di otot yg sedang beraktifitas.
- Mioglobin

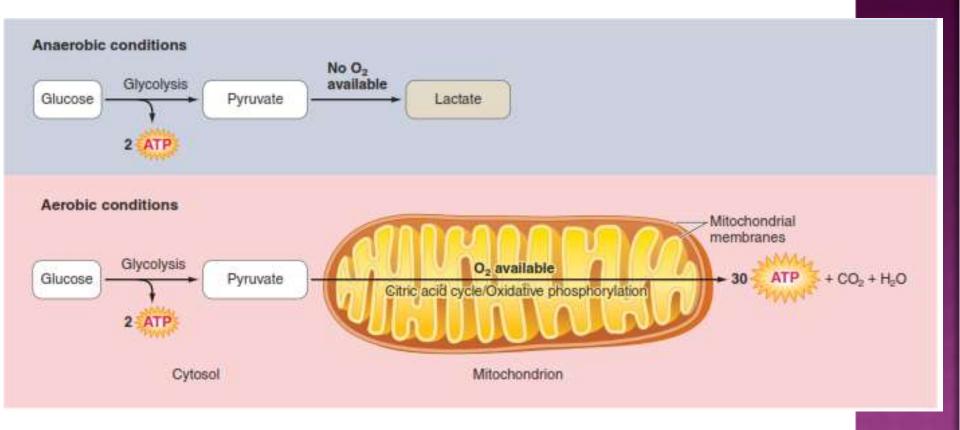
 mempercepat pemindahan O2 dari darah ke otot

BEBERAPA FAKTOR SAAT TIDAK TERCUKUPI KESEDIAAN O2 PADA SAAT EXERCISE

- Terdapat pembatasan respiratorik dan kardiovaskular mengenai berapa banyak penyerapan dan pengangkutan O2 yg dapat disalurkan ke otot.
- Kontraksi maksimal pada otot yg berkontraksi →
 kontraksi yg kuat menekan pembuluh darah yg berjalan
 melintasi otot hingga hampir tertutup.
- O2 tersedia → system fosforilasi oksidatif yg relative lambat tdk mampu menghasilkan ATP cukup cepat.



III. GLIKOLISIS (SISTEM GLIKOGEN ASAM LAKTAT)


• Reaksi kimiawi pada glikolisis menghasilkan produkproduk yg akhirnya masuk ke jalur fosforilasi oksidatif, ttp juga dpt berlangsung tanpa produkproduknya diproses lbh lanjut oleh fosforilasi oksidatif.

Keunggulan dibandingkan jalur fosforilasi oksidatif

- Glikolisis dpt membentuk ATP tanpa O2
- Berlangsung lbh cepat drpd fosforilasi oksidatif

JALUR
METABOLIK
YANG
MENGHASIL
KAN ATP
SELAMA
KONTRAKSI
DAN
RELAKSASI
OTOT

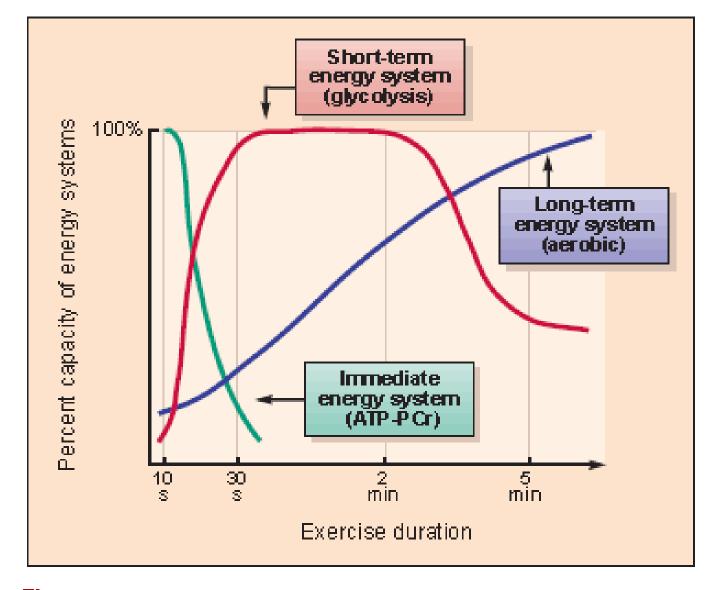
• Pada anaerob→Energi di dalam molekul glukosa yg belum diambil tetap tersimpan dalam ikatanikatan molekul asam piruvat→ asam laktat jika tdk masuk ke jalur→ fosforilasi oksidatif (36 mol ATP/mol glukosa)

SISTEM GLIKOGEN ASAM LAKTAT (CONT..)

- Membentuk molekul ATP 2,5x > cepat daripada mekanisme oksidatif mitokondria.
- Kontraksi otot untuk waktu singkat sampai sedang
- Digunakan untuk memperpanjang waktu kontraksi yang maksimal 1,3-1,6 menit.
- Olahraga anaerob atau intensitas tinggi

KEKURANGAN SYSTEM GLIKOLISIS

- Jauh kurang efisien dibandingkan dgn fosforilasi oksidatif dlm mengubah energi menjadi ATP.
- Sel otot menyimpan glikogen dlm jumlah terbatas → glikolisis cepat menguras simpanan glikogen otot.
- Netika produk akhir glikolisis anaerob (asam piruvat)
 tdk dpt diproses oleh fosforilasi oksidatif→ asam laktat


PERBANDINGAN SUPLAI ENERGI DARI BERBAGAI SISTEM METABOLISME ENERGI TUBUH

In comparing this aerobic mechanism of energy supply with the glycogen-lactic acid system and the phosphagen system, the relative maximal rates of power generation in terms of moles of ATP generation per minute are the following:

Kecepatan pembentukan ATP	Moles of ATP/min
Phosphagen system	4
Glycogen-lactic acid system	2.5
Aerobic system	1

When comparing the same systems for endurance, the relative values are the following:

Lama ketahanan ATP	Time
Phosphagen system	8-10 seconds
Glycogen-lactic acid system	1.3-1.6 minutes
Aerobic system	Unlimited time (as long as nutrients last)

Figure 7.2 Three energy systems and their percentage contribution to total energy output during all-out exercise of different durations.

(Katch, et al, Essentials of exercise physiology, 4^h ed. Page 204

SISTEM ENERGI YANG DIGUNAKAN DALAM BERBAGAI JENIS OLAHRAGA

Phosphagen System, Almost Entirely	
100-meter dash	
Jumping	
Weight lifting	
Diving	
Football dashes	
Baseball triple	
Phosphagen and Glycogen-Lactic Acid Systems	
200-meter dash	
Basketball	
Ice hockey dashes	
Glycogen-Lactic Acid System, Mainly	
400-meter dash	
100-meter swim	
Tennis	
Soccer	

Glycogen-Lactic Acid and Aerobic Systems
800-meter dash
200-meter swim
1500-meter skating
Boxing
2000-meter rowing
1500-meter run
1-mile run
400-meter swim
Aerobic System
10,000-meter skating
Cross-country skiing
Marathon run (26.2 miles, 42.2km)
Jogging

Olahraga jenis apa? Menggunakan sistem mana?

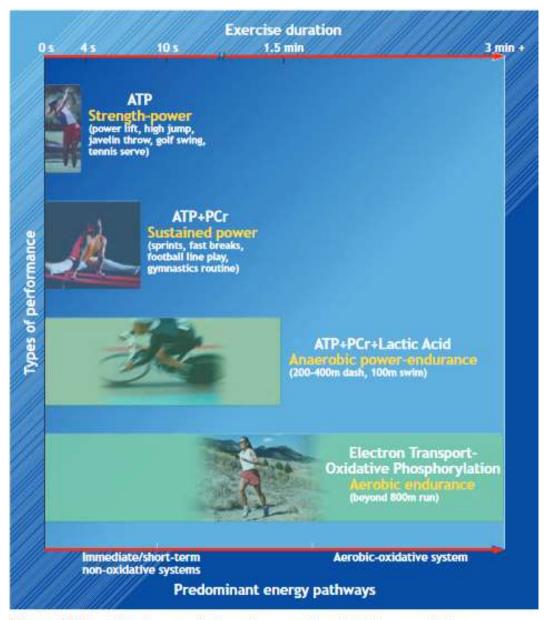


Figure 13.1 Classification of physical activity based on duration of all-out exercis and corresponding predominant intracellular energy pathways.

PEMULIHAN SETELAH KERJA FISIK

PEMULIHAN SETELAH EXERCISE DIPERLUKAN:

- Pelunasan defisit oksigen yg terjadi selama OR → aktifitas kontraktil di topang oleh ATP nonoksidatif.
 - Simpanan keratin fosfat otot-otot aktif berkurang.
 - Asam laktat menumpuk
 - Simpanan glikogen terkuras

Oksigen diperlukan untuk pemulihan system-system energi

PEMULIHAN SISTEM METABOLISME OTOT SETELAH KERJA FISIK

- Pasokan ATP segar oleh fosforilasi oksidatif → O2 peningkatan bernapas setelah OR.
- ATP menyusun kembali keratin fosfat (menit)
- Asam laktat → asam piruvat
- Sisa asam piruvat → diubah kembali menjadi glukosa oleh hati → simpanan glikogen di otot dan hati (beberapa jam)
- Energi dari glikogen-asam laktat→menyusun kembali fosfokreatin maupun ATP
- Energi dan metabolisme oksidatif sistem aerobik → menyusun kembali semua sistem yg lain (ATP, fosfokreatin dan sistem glikogen-asam laktat).

PEMULIHAN SISTEM AEROBIK SETELAH KERJA FISIK

Kemampuan energi aerobic (atlit) berkurang

1. Utang oksigen

2.Pengurangan cadangan glikogen otot

1.UTANG OKSIGEN

UTANG OKSIGEN!→ 11,05 L

• Tubuh normalnya memiliki 2 L oksigen cadangan u/metabolisme aerobik tanpa menghirup O2 baru!

> 0,5 L dalam udara paruparu

> > 0,25 L larut dalam cairan tubuh

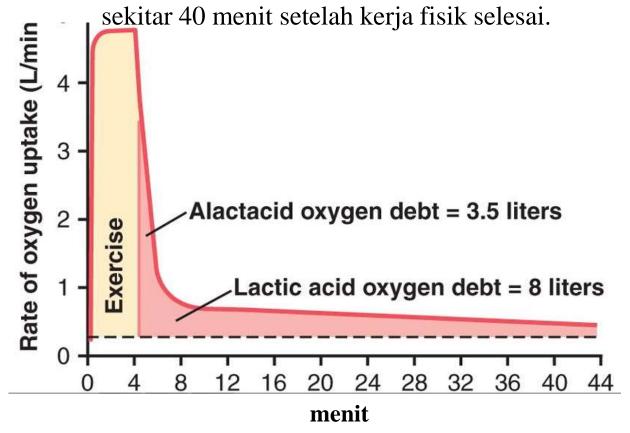
Cadangan O2

1 L berikatan dengan Hb

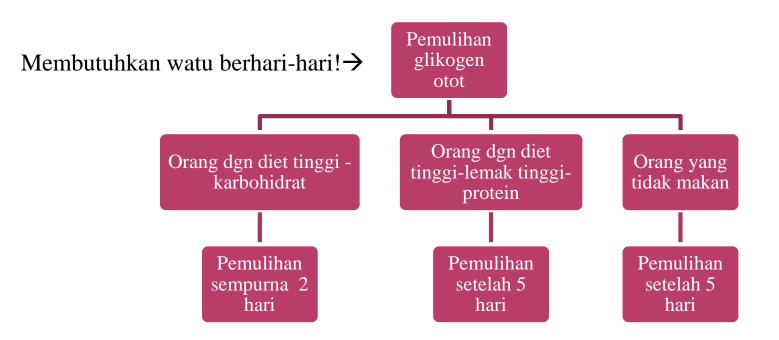
0,3 L tersimpan dalam serat otot berikatan dengan mioglobin

UTANG OKSIGEN (CONT...)

Cadangan O2 digunakan pada kerja fisik yg berat dalam waktu sekitar 1 menit → metabolisme aerobik

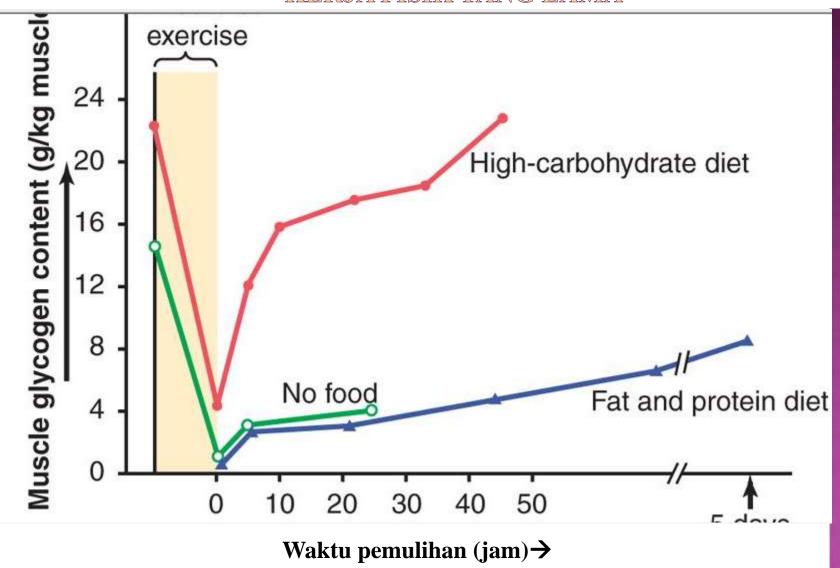

Kerja fisik selesai

- Menghirup O2 melebihi kebutuhan normal
- 9 L, O2 harus di konsumsi → penyusunan kembali sistem fosfagen dan sistem asam laktat
- 2 L, O2 untuk membayar utang O2 (cadangan O2)


Total~11,05L

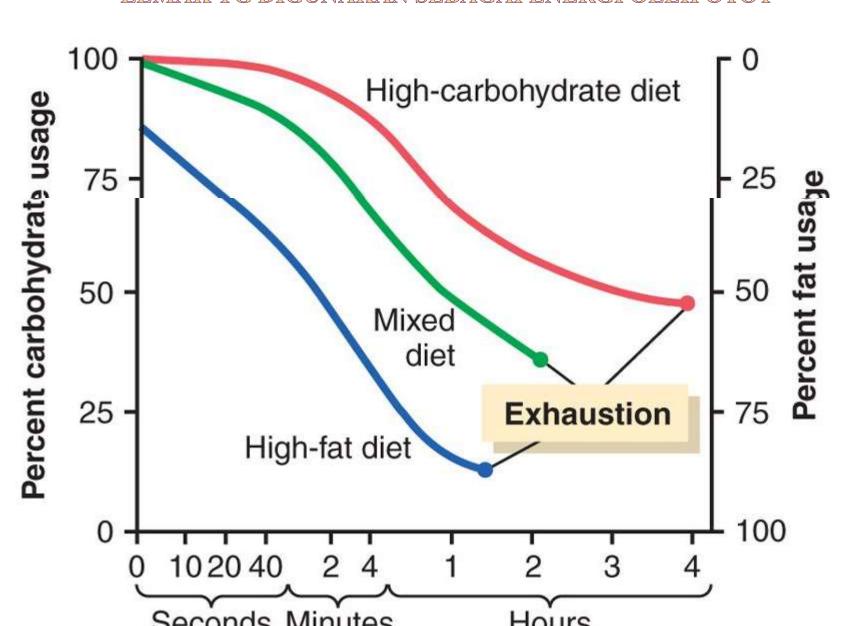
PRINSIP UTANG OKSIGEN

Kecepatan ambilan oksigen oleh paru-paru selama kerja fisik maksimal selama 4 menit meningkat >15x dan kemudian selama



2. PEMULIHAN GLIKOGEN OTOT

- Penting bagi seorang atlet u/diet tinggi karbohidrat sebelum mengikuti perlombaan atletik yg melelahkan
- Tidak berpartisipasi dalam kerja fisik yg melelahkan selama 48 jam sebelum pertandingan


PENGARUH DIET TERHADAP KECEPATAN PENGISIAN KEMBALI GLIKOGEN OTOT (<u>KANDUNGAN GLIKOGEN OTOT</u>) SETELAH KERJA FISIK YANG LAMA

ZAT GIZI YANG DIGUNAKAN SELAMA AKTIVITAS OTOT

Kondisi terbaik Perlombaan atletik ketahanan berlangsung >4-5 jam Cadangan glikogen otot hampir habis seluruhnya **Energi karbohidrat:** Tidak menimbulkan kontraksi otot Simpanan glikogen otot Giloken di hati Butuh! Energi Glukosa darah lain Protein (asam amino) Lemak (asam lemak dan asam asetoasetat) 60-80%

EFEK LAMANYA KERJA FISIK DAN JENIS DIET TERHADAP PRESENTASE RELATIVE PEMAKAIAN KARBOHIDRAT ATAU LEMAK YG DIGUNAKAN SEBAGAI ENERGI OLEH OTOT

TIPE SERAT OTOT RANGKA

- Slow Twitch Fiber (Tipe I)
- Fast Twitch Fiber (Tipe II)

TERDAPAT TIGA JENIS SERAT OTOT RANGKA, BERDASARKAN PERBEDAAN DALAM HIDROLISIS DAN SISNTESIS ATP

- Serat oksidatif lambat (tipe I)
- Serat oksidatif cepat (tipe IIa)
- Serat glikolitik (tipe IIx)
- *Kecepatan kontraksi
- *Jenis enzimatik utama yg digunakan membentuk ATP

OTOT SERAT CEPAT VS SERAT LAMBAT

Ketahanan terhadap kelelahan rendah sehingga relatif lebih lemah.

 Tipe otot ini kaya akan glikogen namun mengandung sedikit myoglobin

Contoh: otot gastrocnemius Ketahanan terhadap kelelahan tinggi sehingga otot tersebut relatif memiliki daya tahan yang lebih baik

- Densitas kapiler yang tinggi
- Banyak mengandung mitokondria
- Memiliki cadangan energi yang tinggi
- Kaya akan red
 pigmentmyoglobin
 (penyimpanan O₂ jangka
 pendek) dan enzim oksidatif
- Contoh: otot soleus

Serat otot cepat

Serat otot lambat (tipe I)

Characteristics of Skeletal Muscle Fibers

TYPE OF FIBER		
Slow-Oxidative (Type I)	Fast-Oxidative (Type IIa)	Fast-Glycolytic (Type IIx)
Low	High	High
Slow	Fast	Fast
High	Intermediate	Low
High	High	Low
Low	Intermediate	High
Many	Many	Few
Many	Many	Few
High	High	Low
Red	Red	White
Low	Intermediate	High
	(Type I) Low Slow High Low Many Many High Red	Slow-Oxidative (Type IIa) Low High Slow Fast High Intermediate High High Low Intermediate Many Many Many Many High High Red Red

PERBEDAAN HEREDITER ANTARA SERAT OTOT BERKEDUT-CEPAT DENGAN SERAT OTOT BERKEDUT-LAMBAT

Latihan atletik **tdk terbukti** dpt mengubah proporsi relatif serat berkedut-cepat dan serat berkedut-lambat.

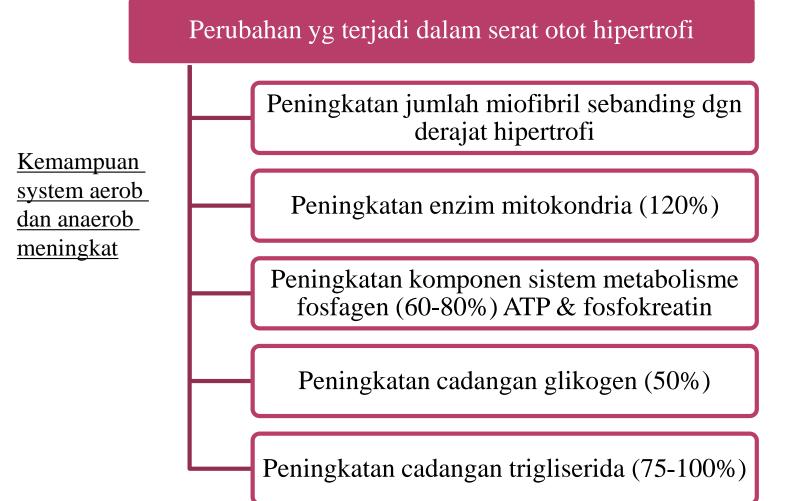
Warisan genetik


Otot quadricep	Fast-Twitch	Slow-Twitch
Marathoners	18	82
Swimmers	26	74
Average male	55	45
Weight lifters	55	45
Sprinters	63	37
Jumpers	63	37

PENGARUH LATIHAN ATLETIK PADA OTOT DAN KINERJA OTOT

Pentingnya latihan daya tahan maksimal

Prinsip! Otot yg bekerja tanpa beban dilatih berjam-jam→ kekuatannya hanya sedikit meningkat dibandingkan dengan otot yg dilatih dengan menggunakan beban.

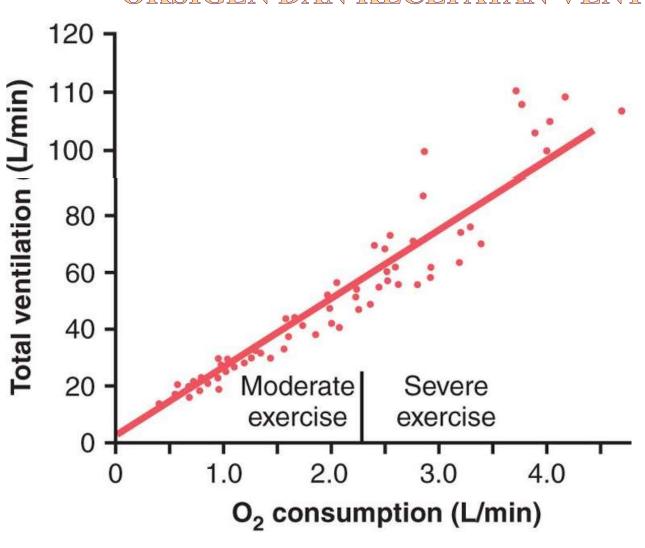

PERKIRAAN EFEK LATIHAN BEBAN YANG OPTIMAL PADA PENINGKATAN KEKUATAN OTOT SELAMA MASA LATIHAN 10 MINGGU

Seorang dewasa muda tidak terlatih melakukan program latihan beban

HIPERTROFI OTOT

- Otot dapat mengalami hipertrofi (30-60%)→latihan reisitensi anaerob dgn durasi singkat
- Peningkatan diameter serat otot daripada peningkatan jumlah serat

PERNAPASAN DALAM KERJA FISIK


KONSUMSI OKSIGEN DAN VENTILASI PARU PADA KERJA FISIK

Konsumsi O2 pria dewasa muda sewaktu istirahat adalah **250 ml/menit**.

Pada <u>keadaan maksimal</u>, dapat ditingkatkan sampai sekitar nilai rata-rata berikut ini:

Konsumsi O2	ml/min
Untrained average male	3600
Athletically trained average male	4000
Male marathon runner	5100

PENGARUH KERJA FISIK TERHADAP KONSUMSI OKSIGEN DAN KECEPATAN VENTILASI

BATAS VENTILASI PARU

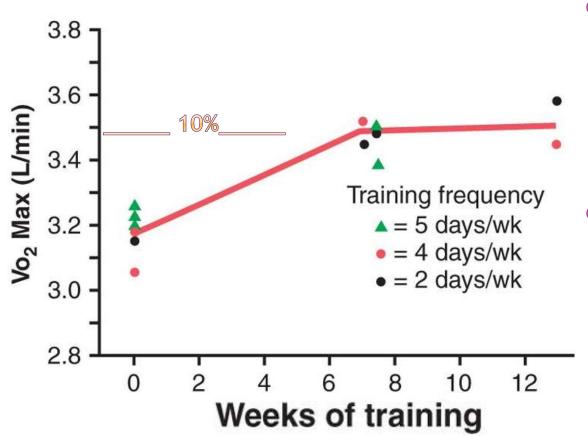
Seberapa berat stres yang diberikan pada sistem pernapasan kita selama kerja?

	L/min
Pulmonary ventilation at maximal exercise	100-110
Maximal breathing capacity	150-170

Kapasitas pernapasan maksimum sekitar 50% >
 ventilasi paru selama kerja maksimal

VENTILASI TAMBAHAN MENJADI UNSUR KEAMANAN BAGI ATLET

Ventilasi tambahan


Kerja fisik di tempat tinggi

Kerja fisik pada kondisi sangat panas

Kelainan sistem pernapasan

EFEK LATIHAN TERHADAP VO2 MAKS

VO2 Maks→ kecepatan pemakaian oksigen dalam metabolisme aerob maksimum.

- VO2 Maks pelari maraton kira-kira 45% > VO2 Maks orang yg tidak terlatih.
- Latihan bertahuntahun meningkatkan VO2 Maks > 10% dari yg terekam dlm latihan jangka pendek

PENINGKATAN KAPASITAS DIFUSI PARU SEWAKTU OLAHRAGA

- Kemampuan membran pernapasan dlm pertukaran gas antara alveoli dan darah paru dpt dinyatakan secara kuantitatif dgn kapasitas difusi membran pernapasan → volume gas yg berdifusi melalui membran tiap menit pada setiap perbedaan tekanan parsial 1 mm Hg.
- Kapasitas difusi pada rata-rata lelaki dewasa muda dlm keadaan istirahat 21 ml/menit/mm Hg.

KAPASITAS DIFUSI OKSIGEN PADA ATLET

 Suatu ukuran kecepatan difusi oksigen dari alveoli paru ke dalam darah (ml/menit/mmHg).

Oarsman during maximal exercise

Nonathlete at rest

Nonathlete during maximal exercise

Speed skaters during maximal exercise

Swimmers during maximal exercise

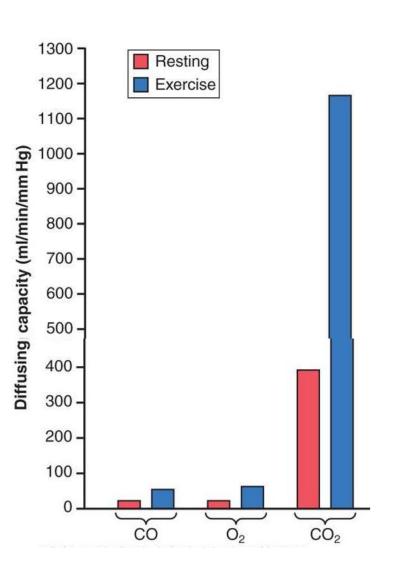
71

KAPASITAS DIFUSI KEADAAN ISTIRAHAT DAN KEADAAN KERJA MAKSIMAL

Keadaan istirahat

Aliran darah melalui banyak kapiler pulmonal mengalir sangat lambat

Keadaan maksimal


Peningkatan aliran darah melalui paru

meningkatkan kapasitas difusi

Daerah permukaan tempat oksigen dpt berdifusi ke dalam kapiler pulmonal

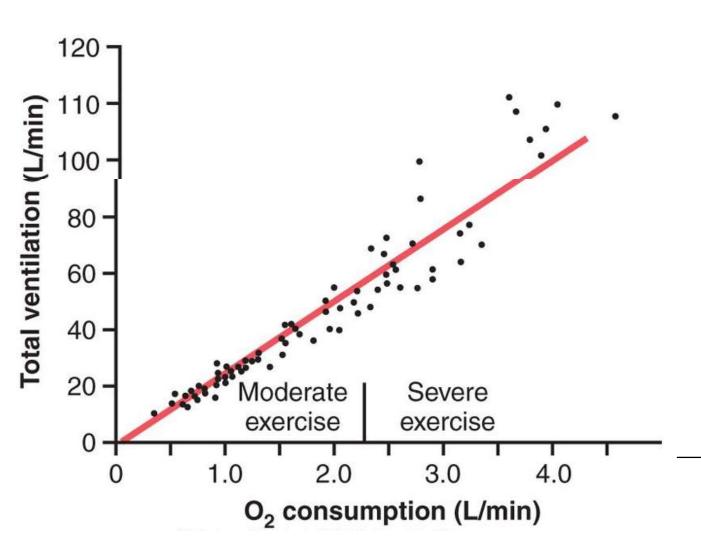
KAPASITAS DIFUSI UNTUK KARBON MONOKSIDA, OKSIGEN DAN KARBON DIOKSIDA PADA PARU NORMAL PADA SAAT ISTIRAHAT DAN SELAMA KERJA FISIK

Faktor peningkatan kapasitas difusi:

- Pembukaan kapiler paru yg awalnya tdk aktif atau dilatasi eksta pd kapiler yg telah terbuka.
- Pertukaran yg lebih baik ventilasi alveoli dan perfusi kapiler alveolus dgn darah (rasio ventilasi-perfusi)
- Peningkatan tekanan darah arteri paru mendorong darah untuk melalui banyak kapiler alveolus -> bagian atas paru

Peningkatan kapasitas difusi juga terjadi di tempat tinggi.

GAS DARAH SELAMA KERJA FISIK



Tetapi pada kenyataannya. Nilainya keduanya tetap normal

Kemampuan ekstrem sistem pernapasan untuk menyediakan aerasi darah yg adekuat walaupun selama kerja berat

EFEK KERJA TERHADAP PEMAKAIAN OKSIGEN DAN LAJU VENTILASI

Ventilasi alveolus meningkat hampir sama dgn peningkatan tingkat metabolisme oksigen

Pengukuran PCO2, pH dan PO2 arteri tidak ada dari ketiga nilai ini berubah secara bermakna selama latihan fisik

apa yg
menyebabkan
giatnya ventilasi
selama latihan
fisik??

APA YG MENYEBABKAN GIATNYA VENTILASI SELAMA LATIHAN FISIK??

Ketika mengirim implus motorik ke otot yg sedang bekerja→kontraksi otot

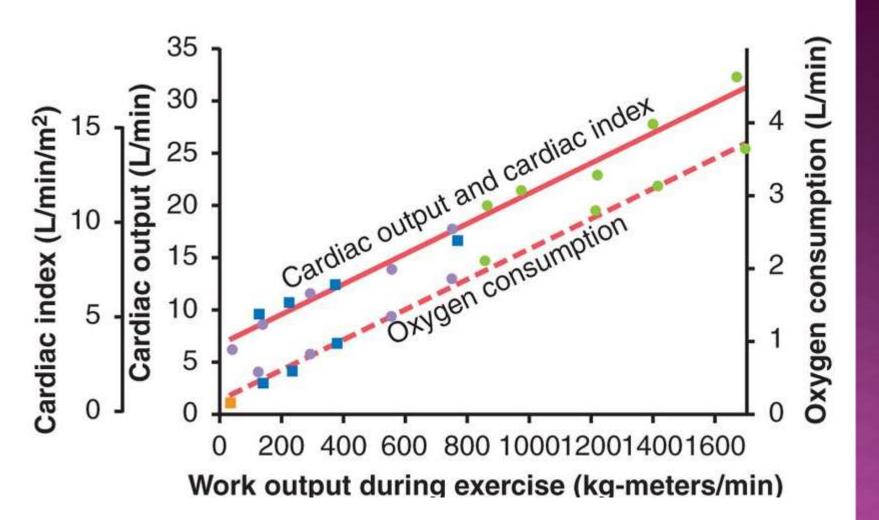
Sinyal sensorik berasal dari otot-otot yg berkontraksi dan sendi yg bergerak

(juga) mengirimkan implus kolateral ke batang otak saat yg bersamaan

Mengeksitasi pusat pernapasan

Gas-gas dlm darah –O2 dan CO2- sangat mendekati normal

SISTEM KARDIOVASKULAR DALAM KERJA FISIK


CURAH KERJA, KONSUMSI OKSIGEN, DAN CURAH JANTUNG SELAMA KERJA

 Perbandingan ini menunjukkan kenaikan aliran darah maksimum yang dapat terjadi pada atlet yang berlatih dengan baik.

	ml/100 g Muscle/min	
Resting blood flow	3.6	
Blood flow during maximal exercise	90	

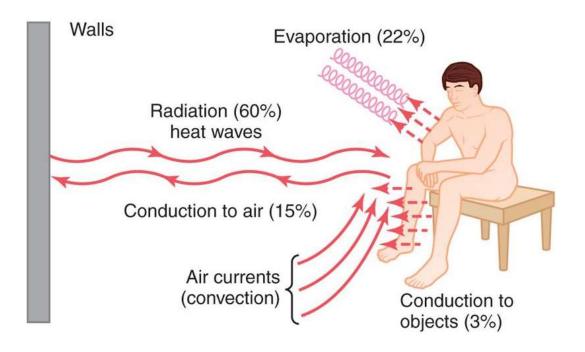
• Perbandingan curah jantung:

	L/min
Cardiac output in young man at rest	5.5
Maximal cardiac output during exercise in young untrained man	
Maximal cardiac output during exercise in average male marathoner	

Hubungan antara curah jantung dan curah kerja dan antara konsumsi oksigen dan curah kerja selama berbagai tingkat kerja fisik.

PERBANDINGAN FUNGSI JANTUNG ANTARA PELARI MARATON DENGAN BUKAN ATLET

Table 84-2, Comparison of Cardiac Function Between Marathoner and Nonathlete


	Stroke Volume (ml)	Heart Rate (beats/min)
Resting		
Nonathlete	75	75
Marathoner	105	50
Maximum		
Nonathlete	110	195
Marathoner	162	185

PANAS TUBUH PADA KERJA FISIK

ENERGI MELEPAS PANAS

Metabolisme tubuh→ "Energi"→panas tubuh

Kontraksi otot

PERLOMBAAN KETAHANAN TERHADAP KONDISI LINGKUNGAN

Perlombaan ketahanan

Hari panas, lembab,pakaian berlebihan

Suhu naik 37 C-40 C atau 98,8 F-102F

Suhu naik 41 C-42 C atau 106 F-108 F

HEATSTROKE

Panas dlm jumlah besar masuk ke jaringan tubuh internal selama melakukan perlombaan atletik ketahanan

Aliran panas yg cepat ke dalam tubuh

- Pada hari yg sangat panas
- Lembab

Mekanisme berkeringat tdk dpt mengeliminasi panas

Heatstroke

HEATSTROKE

Panas bersifat destruktif thdp sel jaringan (utama otak)

Gejala:

- Kelemahan ekstrem
 - Nyeri kepala
 - Pusing
 - Mual
- Banyak berkeringat
 - Kebingungan
- Gaya berjalan sempoyongan
 - Kolaps
 - Tidak sadar

Terapi:

- Membuka semua pakaian
- Memberi semprotan air sejuk ke seluruh permukaan tubuh
 - Kompres secara kontinu
 - Menghembuskan angin ke tubuh dgn kipas angin

CAIRAN TUBUH DAN GARAM DALAM KERJA FISIK

PENURUNAN BB PADA SAAT LOMBA

BB menurun 3% > bermakna mengurangi kinerja atlit

BB menurun 5-10% dgn cepat → kram otot, mual, berbagai efek lain

PENTINGNYA MENGGANTI CAIRAN YANG HILANG

Keringat mengandung NaCl >>

Atlet harus menelan tablet garam (NaCl) saat berlatih di hari yang panas dan lembab

Atlet beraklimatisasi tidak memerlukan atau jarang meminum tablet NaCl

Atlet
beraklimatisasi
terhadap panas

Aklimatisasi
kelenjar
keringat

Jumlah
kehilangan
garam <<

OLAHRAGA AEROBIK UNTUK APA? DAN SEBERAPA BANYAK?

Inaktifitas berkaitan dengan peningkatan resiko terjadinya hipertensi dan penyakit arteri koronaria

American College of Sport Medicine
menganjurkan olahraga aerobik→ min 3x
seminggu selama 20-60 menit untuk mengurangi
hipertensi dan penyakit arteri koronaria serta untuk
meningkatkan kemampuan kerja fisik.